Section $2.2 \# 9$ b (modified denominator to illustrate 17a)
Can the function

$$
f(x, y)=\frac{\cos (x y)-1}{x y}
$$

be made continuous everywhere by suitably defining it when $x y=0$?
Solution: When $x y=0$ we know that either $x=0$ or $y=0$, hence we will have problems defining this function along the y and x axis. However, it pays to notice that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ can be written as the composition $f=g \circ h$ where $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $h(x, y)=x y$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $g(\alpha)=\frac{\cos (\alpha)-1}{\alpha}$.

By Theorem 5 in section 2.2 we know that if h is continuous at a point $\left(x_{0}, y_{0}\right)$ and g is continuous at the image point $h\left(x_{0}, y_{0}\right)$ then the composition $g \circ h$ will be continuous at the point $\left(x_{0}, y_{0}\right)$. Hence we only need to show that g and h are continuous at every point in their domains in order to show that f is continuous at every point (or, more simply, f is continuous).

The fact that h is continuous everywhere is easy - it is shown in Example 8 on page 119 .

The fact that g is continuous everywhere is only slightly more difficult. Obviously g has a problem when $\alpha=0$. However, if we use L'Hopital's rule then we see that g can be MADE continous by redefining it as

$$
g=\left\{\begin{array}{cc}
\frac{\cos (\alpha)-1}{\alpha} & \alpha \neq 0 \\
0 & \alpha=0
\end{array}\right\} .
$$

Hence we have shown that g and h are continuous everywhere on their respective domains, hence $f=g \circ h$ is continuous everywhere.

