CLASS NOTES PART I (M427K FALL 2004)

INTRODUCTION

Due to popular request, I have decided to post an outline/summary of what
we have done so far in class. I will continue to update this resource as the class
continues. I hope that this will more or less “tie” the notes and homeworks together
into something cohesive - something that you can understand.

Essentially, this will be zoology. I will classify what we have done so far, and put
in references to relevant homework problems. There has been a LOT of material
covered in class but not in the homeworks. Here I will try to outline briefly what
to do if you come across this stuff, and hopefully put in an example.

I know that this class is demanding. Just do your best... and keep in mind that
I’'m spending more time typing this stuff up than you are in learning it (and that I
have my own work t00).

1. VARIABLE SEPARABLE TYPE

These type of equations are called Variable Separable because we can (more or
less) easily separate the variables and just integrate. At the time of this writing
the class is already well beyond this, so I won’t spend much time laboring over the
details.

1.1. Variable Separable. These are the easiest. By using basic high school alge-
bra we can separate the equation

M(z,y)dz + N(z,y)dy =0

(where M (z,y) and N(z,y) both depend on z and y) into something that looks
like
M'(z)dx + N'(y)dy = 0.

This should be easy to integrate and solve. For examples see Homework #1
problems 1, 2, and 3.
link www.math.utexas.edu/"stirling/teaching/M427K/hwl.pdf

1.2. Homogeneous Equation. This is the “kissing cousin” of type 1.1. It is of
the form

M(z,y)dz + N(z,y)dy =0

where M (z,y) and N(z,y) are homogeneous (of the SAME order). If you don’t
remember what homogeneous means, then consult YOUR notes. This is only meant
to be a brief outline.
The strategy to solve these is to try the substitution y = uz. For an example of
this stuff see Homework #2 problem 3.
link www.math.utexas.edu/"stirling/teaching/M427K/hw2.pdf
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1.3. “Almost” Homogeneous Equation. This is “almost” like type 1.2. It looks
like

(az + by + 5)dx + (cx +dy + T)dy = 0

(notice that the additional constants 5 and 7 make the whole equation non-homogeneous).
The trick is to change variables so that it looks like type 1.2 (remember the cross-
ing lines), and then solve it using the method presented there. For examples see
Homework #3 and Homework #4 problems 1 and 2.

link www.math.utexas.edu/"stirling/hw3sols.pdf

link www.math.utexas.edu/~stirling/teaching/M427K/hudsols.pdf

NOW there is one possible problem... that is IF the lines don’t cross (if the
lines are parallel). Then, using this method, you will find that you won’t be able
to change coordinates to make it homogeneous (you will end up with something
ridiculous like 2=0... something that isn’t true). No homeworks were presented
with this sort of problem, so let me just give an example

1.3.1. Example of when lines don’t cross.
(z+y+3)de+ 2z +2y+T7)dy=0

This looks “almost” homogeneous, so let’s try the substitution z = T + h and
y = 7 + k like in Homework #3. You will try to solve for h and k and you will just
get the equation 3 = % This is bogus... so this method didn’t work (the lines are
parallel).

Fortunately, the answer will be even easier... try the substitution v =2 +y +3
(or whatever comes in front of the “dz”) in the differential equation. So dv = dz+dy
(hence dz = dy — dv). Now get rid of z in favor of v in the differential equation
and you will see that it will become completely separable (type 1.1).

2. EXACT DIFFERENTIAL EQUATION TYPE

We sort of breezed over these, but they’re going to show up on the exams, so
listen up. Basically we need to classify these by how we solve them

2.1. Exact Differential Equation. These are equations of the form
M(z,y)dz + N(z,y)dy =0
where the “exactness test” is true, that is: % < %. I wrote a long discussion of

these equations (and how to solve them) in Homework #4 problem 3
link www.math.utexas.edu/“stirling/teaching/M427K/hw4sols.pdf

2.2. Integrating Factor Method. These are differential equations of the form

y'(z) + P(z)y(z) = Q(x).

They can be solved by using the so-called “integrating factor function” u(z). For
details on how to solve these see Homework #6 problems 1, 2, and 3.
link www.math.utexas.edu/"stirling/teaching/M427K/hw6sols.pdf
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2.2.1. Bernoulli Equation. This is really just making type 2.2 a little fancy. There
were no homework problems about it, so here’s what to do: if you see a differential
equation of the form
y'(z) + P(2)y(z) = Q(2)y" (2)
then notice how much it looks like type 2.2 (it just has an extra y™(z) on the RHS).
Try doing the obvious thing: divide by y™(z)...

y'(z) +P(2) yz) _ Q).

y™(z) y"(z)
Thenlet Y = yyn(fw)) =y'~"(z).Sothen Y'(z) = 4¥ = %g—fc’ = (1-n)y—""Y(2)y' () =
(1-n) 3n (zm)) Ah ha!! In other words, ;;’n((zm)) = (11_(?), so let’s just plug these results
into the differential equation, yielding:

Y'(z)

T PEY @) = Q).

Except for the factor of (1 — n) (which is just a number, after all, so we can
multiply the whole equation by it giving a new P(z) and Q(z)) this is EXACTLY
type 2.2. So NOW solve it using the method given there.

3. NTH ORDER LINEAR DIFFEQ

So far you have been studying how to solve first order (1 derivative) differential
equations. These methods can be used to solve BOTH linear AND nonlinear equa-
tions (but only if there is at most 1 derivative!!!). If you don’t know what the words
“linear” and “nonlinear” mean (which I suspect that you DON’T), don’t freak out.
Basically, linear equations are MUCH easier to solve than nonlinear equations.

Now, if we allow higher derivatives (“nth order differential equations”) then it
becomes MUCH harder. We actually can’t take care of nonlinear equations any-
more, but fortunately we can still handle linear equations. This will be the subject
of most of the rest of the class (I suspect).

We'll start by solving the “n** order linear differential equations” by first con-
sidering the ones when the RHS=0. Then we’ll try to take care of them when the
RHS is NOT zero.

3.1. nt* Order Linear Differential Equations with RHS=0. We’ll start by
limiting ourselves to only 2 derivatives (and with the RHS=0). These are equations
that look like )
dy  .dy
< 5_
d?
or we usually write it in the shorthand

y" +5y' + 6y =0.

The RHS=0 condition just means that, after we put all of the y’s onto the LHS,
there is nothing left on the RHS. Don’t be fooled by some equation like y" + 5y’ =
—6y (which is just the same equation... you might not think that the RHS is zero,
but just take the y stuff over to the other side).

Now sometimes we also write the derivative operator % as a big “D”. So we
could rewrite this equation as

(D? + 5D + 6)y(x) = 0.

+ 6y =0,
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However you want to write it, there are a couple of ways to solve this. You could
factor the derivative operators, yielding
(D +2)[(D +3)y(x)] =0

and then consider it like peeling an onion (starting from the outside, and moving
in). I mean that you could solve first (D + 2)v(z) = 0 for v(z) and then plug this
solution into the equation [(D + 3)y(x)] = v(z) to solve for y(x). In fact, this is
what we’ll need to do later.

3.1.1. Solve by guessing. The easier way is to just guess a solution: try y(z) = e™*
and plug it into the differential equation to figure out what m has to be. This gives
the equation
m2e™® 4+ 5me™® + 6™ = 0.
Now factor out the ™", giving
e™(m? 4+ 5m + 6) = 0.
So m? + 5m + 6 = 0, which has solutions (quadratic formula) m = —2,—3. So I
have solutions to the differential equation:
y(x) =e™, y(z) =e”

In the math lingo, these are “linearly independent solutions”, so the real solution

is just these added together with arbitrary constants out front:

y(z) = Cr1e™ 2 4 Che 7.

3z

3.1.2. What if we have same roots? Now it’s not always true that we will have
different roots, i.e. we might have had m = —2, —2. The differential equation that
would give these two (same) roots is

(D? +4D + 4)y(z) = 0.

This is a bit more messy, and we need to use what we briefly mentioned (before
we played the guessing game y(z) = e™*). We need to solve this by factoring the
operator, i.e. making it look like (D + 2)[(D + 2)y(z)] = 0. Then we solve these
differential equations a factor at a time (starting from the outside). So we start by
letting v(z) = [(D + 2)y(x)] (the stuff inside the [] brackets). Then we have the
equation (D + 2)v(z) = 0. This is really easy to solve... it is first order (it has only
1 derivative), so it falls into the category of what we’ve been doing all semester
already. In fact, it’s separable, with the solution

v(z) = Cre ",
Plugging this into the equation v(z) = [(D + 2)y(z)] gives the equation
Cie * = (D + 2)y(z).

This also is a first order differential equation, so you should have enough tools to
solve it (hint: use method of integrating factors). The full solution is

y(x) = Cre 2 4 Coze™ 2.

Notice the extra z on the second term. This is a trend: for every repeated root we
need to multiply by z, 2, 23, z*,.. ..

So if we had the 4th order differential equation
(D+2)(D+3)(D+2)(D +2)y(z)



CLASS NOTES PART I (M427K FALL 2004) 5

then we would have m = —2,—2, —2, —3. So the general solution would be
y(r) = C1e73% 4+ Che™ 2% 4+ Cyze 2 + Cyz?e™22.

3.1.3. What if roots are complex? We might also have complex roots when we factor
the auxilliary equation, i.e. we might have
m = a + ib, a — ib.
We do the same thing... the solution is just these roots in an exponent with
arbitrary coefficients out front
(31) y(x) — Cle(a-i-ib)a: + 026(a7ib)w.

That’s it!!! Now the coefficients C; and Cy should be complex numbers (since we
already introduced complex numbers into the problem, we have to live with complex
coeflicients everywhere).

Dr. Guy spent quite a while rewriting this into just a cosine. Just keep in mind
that this is ONLY a rewriting! First, start by factoring e®® out front and then using
Euler’s formula e = cos(f) + isin(f) to rewrite equation 3.1 as

y(z) = e*((C1 + C3) cos(bzx) + i(Cy — Cs) sin(bx)).

It’s at this point that Dr. Guy actually PUTS IN MORE INFORMATION!!!
He said that he only wants REAL solutions (i.e. he wants to OUTLAW complex
numbers). So we just change the complex coefficients in front of the sine and cosine
to real numbers A and B, i.e.

y(z) = e*(Acos(br) + Bsin(bz)).

Now the rest is just trig identities. Factor out v/ A2 + B2 out front, giving

A B
z) = eV A2+ B (——— —_—
y(@) (\/A2+32 VA? + B2
Then we can think of a right triangle from high school. One of the legs has
length A and the other has length B. According to the Pythagorean theorem, the
hypotenuse has length /A2 + B2. So if we call the angle inside of the triangle 4,
then ﬁ = cos(d) and ﬁ = sin(d). Hence we rewrite this the solution as

y(z) = e*/ A% + B2(cos(d) cos(bx) + sin(d) sin(bx)).
Letting C = v/ A2 4+ B2 and using the trig identities that you were given in Home-
work #5 yields the final result
y(z) = e*D cos(bx + 9).

That’s it!!! Equation 3.1 has been rewritten in terms of a cosine and arbitrary (real)
constants D and é. This is somehow a prettier way to write it than equation 3.1,
because we know how that looks!!!

3.2. On to n'* Order Linear Differential Equations with RHS NOT ZERO!!!
This is such a big topic that I'll present it in part II of the notes.

cos(bzx) + sin(bz)).



