
A BRIEF GUIDE TO ORDINARY K-THEORY

SPENCER STIRLING

Abstract. In this paper we describe some basic notions behind ordinary K-
theory. Following closely [Hat02b] we’ll first study unreduced K-theory. With-
out working too hard we’ll see that unreduced K-theory exhibits cohomological
properties; in particular we shall produce an external product map analogous
to the cross product in ordinary cohomology. The remarkable fact, known as
Bott periodicity, is that this map is actually an isomorphism in certain im-
portant cases. We’ll exploit these important cases as we move on and study
reduced K-theory. Like unreduced K-theory, reduced K-theory exhibits coho-
mological properties, and Bott periodicity will show us that the usual coho-
mological long exact sequences (in the case of K-theory) are actually periodic.

1. Introduction

In this paper we hope to provide a brief introduction to the ideas behind ordinary
K-theory. Since the goal of this paper is to provide a whirlwind tour we shall omit
many details. In particular we assume that the reader is already familiar with the
basic vector bundle constructions such as direct sum and tensor product of vector
bundles (see Chapter 1 from [Hat02b] for details).

Also in the interest of clarity we shall not sprinkle repeated references to [Hat02b]
throughout this paper. Anything not rigorous here is presented there in beautiful
detail (in fact we’ll keep identical notation).

2. Unreduced K-theory

To begin fix a compact Hausdorff manifold X. It’s useful to set some notation
before charging ahead: denote the trivial n-dimensional complex vector bundle over
X as εn ∈ VectC(X) (from now on we understand that all vector bundles in this
paper are complex ).

Our goal is to construct a ring out of the operations of direct sum ⊕ and tensor
product ⊗ on VectC(X) (despite the fact that there is no ring structure from the
outset).

Given an arbitrary vector bundle V it is trivial to see that V ⊕ ε0 ' ε0⊕V ' V
and also that V ⊗ ε1 ' ε1 ⊗ V ' V . So we have an abelian monoidal operation ⊕
and a commutative multiplication operation ⊗ (with unit). In other words we have
a structure that almost looks like a commutative ring with identity.

Since we’re very close to having a ring structure it makes sense to try to extend
the abelian monoidal structure to an abelian group structure. It turns out that this
can always be done, at least formally, using the standard Grothendieck construction.
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The structure that is missing from what we already have is an additive inverse
(i.e. negative vector bundles). The consistent way to extend the category is to
consider formal differences of vector bundles E1 − E2 ∈ VectC(X)×VectC(X).

Obviously the space VectC(X)×VectC(X) is far too big for our purposes because
(as the notation suggests) we want to identify two formal differences E1 − E2 =
E′

1 − E′
2 if

(1) E1 ⊕ E′
2 ' E′

1 ⊕ E2,

but even this space it too big! It turns out that demanding a vector bundle iso-
morphism ' in the equation above is far too discerning for two ordered pairs to be
”equivalent”. We can, however, weaken this condition considerably. For this let us
introduce the (more forgiving) notion of stable isomorphism: write V ≈W if there
exists a trivial bundle εn for some n such that V ⊕ εn 'W ⊕ εn.

Now we have the appropriate ideas in place. We’ll set two ordered pairs equal
E1 − E2 = E′

1 − E′
2 if (note the stable isomorphism - we do not require an actual

isomorphism!)

(2) E1 ⊕ E′
2 ≈ E′

1 ⊕ E2.

The set of formal differences has a well-defined addition:

(3) (E1 − E2) + (E′
1 − E′

2) = E1 ⊕ E′
1 − E2 ⊕ E′

2

a well-defined negation:

(4) −(E1 − E2) = E2 − E1

and an additive identity

(5) E − E.

(it’s easy to check that this equivalence class is independent of E).
Multiplication is defined by using the obvious distributive law

(6) (E1 − E2)(E′
1 − E′

2) = ((E1 ⊗ E′
1)⊕ (E2 ⊗ E′

2))− ((E1 ⊗ E′
2)⊕ (E2 ⊗ E′

1))

and the multiplicative identity is just (the equivalence class of)

(7) ε1 − ε0.

We denote this ring of formal differences K(X), the unreduced K-theory of X.

3. Some similarities to ordinary cohomology

Recall that ordinary cohomology [Hat02a] is a contravariant functor from the
category of topological spaces to the category of rings. More concretely if f : X →
Y is a continuous map between topological spaces then there is an induced ring
homomorphism f∗ : H∗(Y ) → H∗(X) (satisfying the usual properties). These
pullbacks are only sensitive up to homotopy classes of maps, i.e if f is homotopic
to g (f ' g) then f∗ = g∗.

In ordinary cohomology we first meet the cup product ` which tells us how to
multiply two elements in the cohomology over the same space X. The analogue in
K-theory is the (interior) product described in Equation 6.

Cohomology, however, is much richer and admits several types of products. For
example, there is the so-called cross product which relates the cohomology of a
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product space H∗(X × Y ) to the cohomology of the individual factors H∗(X) and
H∗(Y ). It’s not surprising that we define this using the cup product

× : H∗(X)×H∗(Y )→ H∗(X × Y )(8)

(a, b) 7→ p∗1(a) ` p∗2(b)(9)

where p1 : X × Y → X and p2 : X × Y → Y are the usual projection maps.
Furthermore it’s easy to see that the cross product is actually R-linear (where R

is the coefficient ring) since ` distributes over addition. This means that the cross
product factors through the following diagram

(10) H∗(X)×H∗(Y ) //

))SSSSSSSSSSSSSS
H∗(X × Y )

H∗(X)⊗R H∗(Y )

66mmmmmmmmmmmmm

We therefore write the cross product as a map

× : H∗(X)⊗R H∗(Y )→ H∗(X × Y )(11)

a⊗R b 7→ p∗1(a) ` p∗2(b)(12)

As we shall now see it happens that unreduced K-theory admits natural ana-
logues of the structures just discussed. This encourages us to view K-theory as an
example of a generalized cohomology theory (in the sense of Eilenberg-Steenrod).
Reduced K-theory, which we’ll meet in the sequel, actually mimics ordinary coho-
mology even better!

K-theory can, like ordinary cohomology, be viewed as a contravariant functor
from the category of compact Hausdorff topological manifolds to the category of
rings. In other words, a continuous map f : X → Y induces a pullback map

f∗ : K(Y )→ K(X)(13)

E − E′ 7→ f∗(E)− f∗(E′).(14)

It is easy to check that the pullback map f∗ is a ring homomorphism, and it
also follows from the properties of vector bundles that (fg)∗ = g∗f∗ and 1

∗ = 1.
Furthermore, if f is homotopic to g (f ' g) then f∗ = g∗. So K-theory indeed
defines a contravariant functor from (compact Hausdorff) topological manifolds to
rings.

Just as we have a cross product in ordinary cohomology we see that an external
product emerges in unreduced K-theory

µ : K(X)×K(Y )→ K(X × Y )(15)

(a, b) 7→ p∗1(a)p∗2(b)(16)

(17)

where on the RHS we have used the (internal) product previously defined in Equa-
tion 6 and p1 : X × Y → X, p2 : X × Y → Y are the usual projection maps. In
fact (much like the cross product in ordinary cohomology) it is straightforward to
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check that multiplication factors through the diagram

(18) K(X)×K(Y ) //

((QQQQQQQQQQQQQ
K(X × Y )

K(X)⊗K(Y )

77nnnnnnnnnnnn

so we view (external) multiplication as a map

µ : K(X)⊗K(Y )→ K(X × Y )(19)

a⊗ b 7→ p∗1(a)p∗2(b)(20)

(21)

For brevity let’s agree to use the notation

(22) µ(a⊗ b) = a ∗ b.

4. Bott periodicity

The fundamental insight that allows us to proceed further is the following beau-
tiful result discovered by Bott [Bot59]:

Theorem 1 (Bott). The external product µ : K(X) ⊗K(S2) → K(X × S2) is a
ring isomorphism.

Proof. Omitted. See [Hat02b]. �

Remark 1. Notice that the second factor in the theorem is Y = S2. Naively this
result seems ”cute” but perhaps not generally useful. In fact this result will mean
a great deal more later.

5. Reduced K-theory

Now we transition to the second theme of this paper: reduced K-theory K̃(X).
For the purposes of this paper there are two vantagepoints on K̃(X). The first is
as follows: recall that in unreduced K-theory we needed to talk about (equivalence
classes of) formal differences of vector bundles. This was necessary because we
didn’t have additive inverses. We intimated that our notion of “equivalence” of
formal differences required the notion of stable isomorphism ≈ (recall that two
vector bundles V,W ∈ VectCX are stably isomorphic V ≈ W if there exists a
trivial vector bundle εn such that V ⊕ εn 'W ⊕ εn are isomorphic).

As far as reduced K-theory is concerned our tak is somewhat similar. Here we
will not, however, need to talk about formal differences of vector bundles. Rather
we can proceed with VectCX itself. The cost of doing so is that our notion of
equivalence will need to be even weaker than stable isomorphism.

For V,W ∈ VectCX define V ∼ W if there exists trivial bundles εn and εm

(of possibly different dimension) such that V ⊕ εn ' W ⊕ εm. Denote the set of
equivalence classes by K̃(X). With respect to ⊕ the additive identity is εm for
arbitrary m since ε0 ∼ εm. In view of the following lemma K̃(X) has additive
inverses “for free”, so K̃(X) is already an abelian group (without having to appeal
to the Grothendieck construction):

Lemma 1. For every vector bundle E over a compact Hausdorff space X there
exists a vector bundle E′ such that E ⊕ E′ is trivial.
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Proof. Omitted. See [Hat02b]. �

In fact K̃(X) happens to be a ring (even though we haven’t written down a
well-defined multiplication operation yet).

To see that K̃(X) is a ring we need our second vantagepoint on reduced K-theory.
Let us return momentarily to unreduced K-theory K(X). Using Lemma 1 it is easy
to show that any element of K(X) has a representative of the form E − εn (where
as usual εn is a trivial vector bundle).

Then we can define a group homomorphism K(X)→ K̃(X) as the map E−εn 7→
E. It is trivial to show that this map is independent of choice of representative since
if E−εn ≈ E′−εm then E ∼ E′. The kernel of this homomorphism is the subgroup
{εm − εn} ' Z.

Stated more formally, reduced and unreduced K-theory fit into the following
short exact sequence

(23) 0→ Z

s

�
p

K(X)→ K̃(X)→ 0.

Our notation alludes to something quite stronger: there exists a splitting map p;
in other words K̃(X)⊕ Z ' K(X).

Let us construct the splitting map p. Before we begin choose a basepoint x0 ∈ X.
We easily convince ourselves that K(x0) ' Z since every vector bundle over a single
point is trivial. Therefore we substitute K(x0) for Z in the short exact sequence
above.

Now the inclusion map x0 ↪→ X induces a pullback map p : K(X)→ K(x0). On
the other hand the map X → x0 that crushes X to a point induces its own pullback
map s : K(x0) → K(X). It is straightforward to check that p ◦ s is the identity,
so we have succeeded in constructing the desired splitting K̃(X)⊕K(x0) ' K(X).
In view of this we have our second characterization K̃(X) ' K(X)

K(x0)
.

Looking more closely, it’s easy to see that K(x0) is an ideal in K(X), hence the
above quotient actually makes sense as a ring quotient. This is how we equip K̃(X)
with a well-defined multiplication. So K̃(X) is a ring.

6. Some similarities to ordinary cohomology

Using the second characterization of K̃(X) it seems that reduced K-theory is
more naturally associated with pointed spaces. In this light reduced K-theory
plays a role analogous to what reduced cohomology plays when considering ordinary
cohomology theories.

For example in Section 3 we produced an external product map µ : K(x) ⊗
K(Y ) → K(X × Y ). A similar external product β arises in reduced K-theory,
except for pointed spaces the natural analogue to X × Y is the smash product
X ∧ Y ≡ X × Y/X ∨ Y .

Remark 2. X ∨ Y is the usual wedge product gluing two pointed spaces together
at their basepoints: (X × {y0}) ∪ (Y × {x0}).

It’s easy to describe this external product: let a ∈ K̃(X) = K(X)
K(x0)

and b ∈
K̃(Y ) = K(Y )

K(y0)
. Then it is a matter of definition chasing to show that, under

pullback of the projection map p1 : X×Y → X we have p∗1(a) ∈ K(X×Y )
K(x0×Y ) . Similarly

p∗2(b) ∈
K(X×Y )
K(y0×X) .
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Since K(x0 × Y ) and K(y0 ×X) are ideals we then see that

(24) p∗1(a)p∗2(b) ∈
K(X × Y )

K(x0 × Y ) + K(y0 ×X)
.

Now {x0× Y } and {y0×X} intersect at only a single point so we see that K(x0×
Y ) + K(y0 ×X) = K({x0 × Y } ∪ {y0 ×X}) = K(X ∨ Y ). We are left with

(25) p∗1(a)p∗2(b) ∈
K(X × Y )
K(X ∨ Y )

=
K(X×Y )
K(x0×y0)

K(X∨Y )
K(x0×y0)

=
K̃(X × Y )
K̃(X ∨ Y )

= K̃(X ∧ Y ).

The reader will probably riot (rightfully so) at the last equality. A short glance
below to Fact 1 should give us some direction to resolve the confusion. We get
an exact sequence K̃(X ∧ Y ) → K̃(X × Y ) → K̃(X ∨ Y ). The magic is that this
sequence actually splits, which gives us the last equality above. This splitting is
left to the reader to construct (hint: use the tools given in the next section to show
that K̃(X ∨ Y ) ' K̃(X)⊕ K̃(Y ))

We have now successfully defined the reduced version of the exterior product.

7. Long exact sequence

As usual we want to consider long exact sequences for our “cohomology” theory.
Like all homological algebra stories, this one requires a great deal of setup. We
start by collecting some relevant facts.

Fact 1. If A is a closed subspace of a compact Hausdorff space X then the inclu-
sion and quotient maps A

i→ X
q→ X/A induce an exact sequence (via pullback)

K̃(X/A)→ K̃(X)→ K̃(A).

Already this is starting to look like cohomology. Perhaps we’re losing something
by not producing the proof of the above fact here. Rest assured that the proof does
not reflect a mysterious fact about reduced K-theory, but rather it’s a “nuts-and-
bolts” construction on the underlying vector bundles in reduced K-theory. At least
the following fact is exceedingly easy to believe:

Fact 2. If A is contractible then the quotient map X → X/A induces a bijection
Vectn

C (X/A)→ Vectn
C (X).

The next two facts can be used to complete the exercise left to the reader at the
end of the last section. They can be skipped on a first reading.

Fact 3. K̃(U ∧ V ) ' K̃(U)⊕ K̃(V )

Proof. Let X = U ∧ V and A = U . Fact 1 becomes in this form the short exact
sequence

(26) K̃(U)→ K̃(U ∧ V )→ K̃(V ).

It is a simple geometrical fact that this sequence splits since U and V are con-
nected only at a single point (where vector bundles are trivial). In other words
the equivalence class ∼ of elements in VectCU has basically nothing to do with the
equivalence class of elements in VectCV in the wedge product U∧V because they’re
glued together where vector bundles are trivial. �

This and Fact 2 imply a similar result about suspensions:
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Fact 4. K̃(S(U ∧ V )) ' K̃(S(U))⊕ K̃(S(V ))

Proof. It’s trivial to see that S(U ∧ V ) ' S(U) ∧ S(V ) (U and V are connected
at a single point. Taking the suspension means crossing with an interval, which is
contractible). �

Armed with these facts, let us proceed and try to produce some long exact se-
quences. First, look at Fact 1. In ordinary cohomology theories we are accustomed
to converting (chains of) such short exact sequences into long exact sequences, so
we may expect a similar kind of homological algebraic construction here.

Although we have short exact sequences, unfortunately we do not have (yet)
any species of long exact sequence naturally emerging. Fortunately we can remedy
this situation rather easily. Consider the following map of inclusions known as the
Puppe sequence:

(27) A ↪→ X ↪→ X∪CA ↪→ (X∪CA)∪CX ↪→ ((X∪CA)∪CX)∪C(X∪CA) ↪→ · · ·

where C denotes the usual “cone” operation (crossing a space with the unit interval
and crushing one end to a point). Each space is constructed by taking the space
directly to the left and coning off the (already included) subspace that sits two slots
to the left.

A few mental pictures will convince us of the following homotopies (just use the
cone to crush the subspace included from two slots to the left to a point):

X ∪ CA ' X/A(28)

(X ∪ CA) ∪ CX ' SA(29)

((X ∪ CA) ∪ CX) ∪ C(X ∪ CA) ' SX.(30)

(31)

S denotes the suspension of a space, that is crossing a space with the unit interval
and crushing the ends (each separately) to a point. In light of this homotopy the
above inclusions take the form

(32) A ↪→ X ↪→ X/A ↪→ SA ↪→ SX ↪→ · · ·

Obviously the inclusions written here are not actual inclusions, but rather are
homotopic to inclusions.

Nevertheless this induces a long exact sequence
(33)
· · · → K̃(S2X)→ K̃(S2A)→ K̃(S(X/A))→ K̃(SX)→ K̃(SA)→ K̃(X/A)→ K̃(X)→ K̃(A)

where S2X denotes the suspension of the suspension of X (and so on).
A slight change of notation is in order, especially to bring our results more in

line with ordinary cohomology. Ordinary cohomology is Z-graded, and the usual
long exact sequences respect this grading, that is H0 maps to H1, H1 maps to H2,
and so on. We can achieve a similar notation if we denote K̃−n(X) ≡ K̃(SnX).
Then the above long exact sequence becomes
(34)
· · · → K̃−2(X)→ K̃−2(A)→ K̃−1(X/A)→ K̃−1(X)→ K̃−1(A)→ K̃0(X/A)→ K̃0(X)→ K̃0(A)

Remark 3. We use negative powers to fit with the usual notation that the grading
should increase as one travels up the long exact sequence.
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Table 1. Stable Homotopy Groups

πn−1U(k)
k →
1 2 3 4 . . .

n− 1 0 0 0 0 0 . . .
↓ 1 Z Z Z Z . . .

2 0 0 0 0 . . .
3 0 Z Z Z . . .

We’ll switch freely between this “graded” notation and the previous “n-fold
suspension” notation.

8. K-theory of spheres

We have managed to shamefully pass through a large chunk of formalism without
giving any examples. In this section we’ll calculate the K-theory for the spheres
using a plethora of facts. Hopefully the reader will get the correct impression that
K-theory can be difficult to calculate in general. We also remark that the sphere
example S2 is actually used in the proof of Bott periodicity. Since we haven’t
actually used Bott periodicity for anything yet this is not circular reasoning.

In order to calculate K-theory for the spheres it makes sense to attempt to first
describe the vector bundles over the spheres. Consider the following: the sphere
Sn can be constructed by gluing two disks Dn

+ and Dn
− along the equator Sn−1.

Since the disks are contractible any vector bundle over each disk must be trivial.
Therefore the vector bundles over Sn are completely described by the clutching
functions which tell us how to glue the vector bundles together along the equator
Sn−1.

In other words to glue two k-dimensional vector bundles over the disks together
we need to give at each point along the equator Sn−1 an element of GLC(k) (i.e. we
need to specify a map Sn−1 → GLC(k)). On the other hand it is a fact that the re-
sulting vector bundles are only determined by such a map up to homotopy, hence ac-
tually the k-dimensional vector bundles Vectk

C(Sn) are classified by πn−1(GLC(k)).
We can further reduce the description if we recall that GLC(k) deformation

retracts onto U(k). This is easily seen from the following: it is certainly true that
the Gram-Schmidt process retracts GLC(k) onto U(k). The reader can easily cook
up a scheme using scalar parameters to convert this retraction into a deformation
retraction.

So we now have a bijection πn−1(U(k)) ←→ Vectk
C(Sn) (the fact that this is

a bijection is left to the references). On the other hand K(Sn) and K̃(Sn) hold
information about Vectk

C(Sn) for every dimension k, so we might want to think
about somehow talking about all dimensions at once!

Consider the space U ≡ ∪kU(k). Here each U(k) is embedded in U(k + 1) by
adjoing to each k-dimensional matrix an extra row and column with a single 1 in
the corner. The concerned reader should give U the weak topology.

Technicalities aside, our dreams come true:

Fact 5. K̃(Sn) is isomorphic (as a group) to πn−1(U)
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Our good fortunate doesn’t end there! We can actually compute πn−1(U) if were
not too ambitious (i.e. if n − 1 is small enough - and we’ll relax even that at the
end of the paper). Look at Table 1. Note that the homotopy groups don’t appear
to change as we increase the dimension k. This is known as stability.

Although homotopy groups can be hard to compute in general, it is true that
homotopy groups have long exact sequences (much like homology and cohomology).
In the case where our space is U(k) much can be said from looking at the long exact
sequences of homotopy groups. Incredibly the apparent stability of the groups
πn−1(U(k)) is actually correct for k big enough:

Fact 6. The map πn−1(U(k))→ πn−1(U(k + 1)) induced by the inclusion U(k) ↪→
U(k + 1) is an isomorphism if k > n−1

2 .

If we “pass through the limit” as k →∞ then the stability tells us what πn−1(U)
must be.

Let’s be more concrete for a moment. Consider the space S2. We know now
that K̃(S2) ' π1(U), and from Table 1 we see that π1(U) ' Z.

9. Bott periodicity: revisited

Recall that we already produced an external product

(35) β : K̃(X)⊕ K̃(Y )→ K̃(X ∧ Y )

before we became sidetracked with long exact sequences and the sphere examples.
At this point it makes sense to try to come up with a version of Bott periodicity

for this version of external multiplication. The direct analogue is

Theorem 2 (Bott). β : K̃(X)⊗ K̃(S2)→ K̃(S2 ∧X) is a ring isomorphism.

From our previous discussion we know that K̃(S2) ' Z, and a moment of visual-
ization might convince us that S2∧X is homotopic to S2X (the two-fold suspension
of X), so Bott periodicity becomes

Corollary 1 (Bott). The map β induces an isomorphism K̃(X) ' K̃(S2X) ≡
K̃−2(X)

In light of Corollary 1 it is easy to see that Equation 34 becomes periodic:

(36) K̃−1(X/A) // K̃−1(X) // K̃−1(A)

��
K̃0(A)

OO

K̃0(X)oo K̃0(X/A)oo

Hence we have explained the terminology “Bott periodicity” and provided a
powerful tool for actually computing K-theory.

10. Bott periodicity returns the favor to stable homotopy groups

It would be a shame to not at least mention this last result. Recall that we
mentioned that the stable homotopy group for S2 is used to prove Bott periodicity.

With Bott periodicity under our belt we can turn the table and see what it has to
say about stable homotopy groups. Consider Corollary 1 which says that K̃(X) '
K̃(S2X). In the particular case that X is a sphere we see that K̃(Sn) ' K̃(Sn+2).
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On the other hand recall that K̃(Sn) ' πn−1(U). So this shows that the homotopy
groups πn−1(U) repeat every other n.

This is extremely surprising: not only does πn−1(U(k)) stabilize as k →∞, but
it repeats every other n as well (for k large enough)!
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